Water absorption and degradation characteristics of chitosan-based polyesters and hydroxyapatite composites.

نویسندگان

  • Vitor M Correlo
  • Elisabete D Pinho
  • Iva Pashkuleva
  • Mrinal Bhattacharya
  • Nuno M Neves
  • Rui L Reis
چکیده

Blends of chitosan and biodegradable synthetic aliphatic polyesters (polycaprolactone, poly(butylene succinate), poly[(butylene succinate)-co-adipate], poly[(butylene terephthalate)-co-adipate], and poly(lactic acid)) were injection-molded. These samples were immersed in isotonic solution at 37 degrees C for a period of 60 d. The water uptake and the degradation properties, as measured by the loss in tensile strength, were evaluated as a function of time. In this study, the rate and the equilibrium water uptake were proportional to the amount of chitosan in the blend. The addition of HA to chitosan and polyester significantly reduced the equilibrium water uptake. The water uptake did not follow the classical Fickian phenomena and could be expressed by a two-stage sorption non-Fickian diffusion model. Contact angle measurement was used to quantify the changes in surface hydrophilicity as a function of chitosan and polyester composition. The glycerol contact angle decreased with increasing synthetic components in the blend. The blends and composites also showed increased degradation, as quantified by a loss in their mechanical properties, with increase in natural content. The degradation of properties was directly related to the water uptake of the blends; the higher the water uptake, the higher the degradation. Pure polyesters, while having low water uptake, nevertheless showed significant degradation by a precipitous drop in the strain at break. Among the polyesters, poly(lactic acid) displayed maximum degradation, while polycaprolactone displayed the least.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In vitro study of nano-hydroxyapatite/chitosan–gelatin composites for bio-applications

The present work aims to study the in vitro properties of nano-hydroxyapatite/chitosan-gelatin composite materials. In vitro behavior was performed in simulated body fluid (SBF) to verify the formation of apatite layer onto the composite surfaces. The in vitro data proved the deposition of calcium and phosphorus ions onto hydroxyapatite /polymeric composite surfaces especially those containing ...

متن کامل

Fabrication and mechanical properties of chitosan composite membrane containing hydroxyapatite particles

This paper described the development of chitosan composites containing precipitated hydroxyapatite particles for potential applications in orthopaedic surgery or waste water treatment. The synthetic process and morphology of hydroxyapatite were reported. The effects of hydroxyapatite content on the microstructure and mechanical properties of composites were investigated. It was found that the Y...

متن کامل

Synthesis of calcium-phosphate and chitosan bioceramics for bone regeneration.

Bioceramic composites were obtained from chitosan and hydroxyapatite pastes synthesized at physiological temperature according to two different syntheses approaches. Usual analytical techniques (X-ray diffraction analysis, Fourier transformed infrared spectroscopy, Thermo gravimetric analysis, Scanning electron microscopy, X-ray dispersive energy analysis and Porosimetry) were employed to chara...

متن کامل

Melt-based compression-molded scaffolds from chitosan-polyester blends and composites: Morphology and mechanical properties.

Blends of chitosan and synthetic aliphatic polyesters (polybutylene succinate, polybutylene succinate adipate, polycaprolactone, and polybutylene terepthalate adipate) were compounded with and without hydroxyapatite, a bioactive mineral filler known to enhance osteoconduction. The blends and composites were compression molded with two different granulometric salt sizes (63-125 microm and 250-50...

متن کامل

Mechanical properties of SEVA / hydroxyapatite composite with to HAP different particle sizes

Hydroxyapatite is a biocompatible ceramic and reinforcement for bone implantations. SEVA/HAP composite content HAP filler with difference particle sizes were designed. Mechanical tests like tensile modulus, UTS, strain at break and biodegradation were investigated. Results illustrated much increase tensile modulus of composites content HAP nano powders ratio to micro powders. Also UTS analysis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Macromolecular bioscience

دوره 7 3  شماره 

صفحات  -

تاریخ انتشار 2007